为了在多个机器人系统中有效完成任务,必须解决的问题是同时定位和映射(SLAM)。激光雷达(光检测和范围)由于其出色的精度而用于许多SLAM解决方案,但其性能在无特征环境(如隧道或长走廊)中降低。集中式大满贯解决了云服务器的问题,云服务器需要大量的计算资源,并且缺乏针对中央节点故障的鲁棒性。为了解决这些问题,我们提出了一个分布式的SLAM解决方案,以使用超宽带(UWB)范围和探测测量值估算一组机器人的轨迹。所提出的方法在机器人团队之间分配了处理,并显着减轻了从集中式大满贯出现的计算问题。我们的解决方案通过最大程度地减少在机器人处于近距离接近时在不同位置进行的UWB范围测量方法来确定两个机器人之间的相对姿势(也称为环闭合)。 UWB在视线条件下提供了良好的距离度量,但是由于机器人的噪声和不可预测的路径,检索精确的姿势估计仍然是一个挑战。为了处理可疑的循环封闭,我们使用成对的一致性最大化(PCM)来检查循环封闭质量并执行异常拒绝。然后,在分布式姿势图优化(DPGO)模块中将过滤的环闭合与探光仪融合,以恢复机器人团队的完整轨迹。进行了广泛的实验以验证所提出的方法的有效性。
translated by 谷歌翻译
The goal of this paper is to detect objects by exploiting their interrelationships. Rather than relying on predefined and labeled graph structures, we infer a graph prior from object co-occurrence statistics. The key idea of our paper is to model object relations as a function of initial class predictions and co-occurrence priors to generate a graph representation of an image for improved classification and bounding box regression. We additionally learn the object-relation joint distribution via energy based modeling. Sampling from this distribution generates a refined graph representation of the image which in turn produces improved detection performance. Experiments on the Visual Genome and MS-COCO datasets demonstrate our method is detector agnostic, end-to-end trainable, and especially beneficial for rare object classes. What is more, we establish a consistent improvement over object detectors like DETR and Faster-RCNN, as well as state-of-the-art methods modeling object interrelationships.
translated by 谷歌翻译
Datacenter operators ensure fair and regular server maintenance by using automated processes to schedule maintenance jobs to complete within a strict time budget. Automating this scheduling problem is challenging because maintenance job duration varies based on both job type and hardware. While it is tempting to use prior machine learning techniques for predicting job duration, we find that the structure of the maintenance job scheduling problem creates a unique challenge. In particular, we show that prior machine learning methods that produce the lowest error predictions do not produce the best scheduling outcomes due to asymmetric costs. Specifically, underpredicting maintenance job duration has results in more servers being taken offline and longer server downtime than overpredicting maintenance job duration. The system cost of underprediction is much larger than that of overprediction. We present Acela, a machine learning system for predicting maintenance job duration, which uses quantile regression to bias duration predictions toward overprediction. We integrate Acela into a maintenance job scheduler and evaluate it on datasets from large-scale, production datacenters. Compared to machine learning based predictors from prior work, Acela reduces the number of servers that are taken offline by 1.87-4.28X, and reduces the server offline time by 1.40-2.80X.
translated by 谷歌翻译
We study the expressibility and learnability of convex optimization solution functions and their multi-layer architectural extension. The main results are: \emph{(1)} the class of solution functions of linear programming (LP) and quadratic programming (QP) is a universal approximant for the $C^k$ smooth model class or some restricted Sobolev space, and we characterize the rate-distortion, \emph{(2)} the approximation power is investigated through a viewpoint of regression error, where information about the target function is provided in terms of data observations, \emph{(3)} compositionality in the form of a deep architecture with optimization as a layer is shown to reconstruct some basic functions used in numerical analysis without error, which implies that \emph{(4)} a substantial reduction in rate-distortion can be achieved with a universal network architecture, and \emph{(5)} we discuss the statistical bounds of empirical covering numbers for LP/QP, as well as a generic optimization problem (possibly nonconvex) by exploiting tame geometry. Our results provide the \emph{first rigorous analysis of the approximation and learning-theoretic properties of solution functions} with implications for algorithmic design and performance guarantees.
translated by 谷歌翻译
Recovery of true color from underwater images is an ill-posed problem. This is because the wide-band attenuation coefficients for the RGB color channels depend on object range, reflectance, etc. which are difficult to model. Also, there is backscattering due to suspended particles in water. Thus, most existing deep-learning based color restoration methods, which are trained on synthetic underwater datasets, do not perform well on real underwater data. This can be attributed to the fact that synthetic data cannot accurately represent real conditions. To address this issue, we use an image to image translation network to bridge the gap between the synthetic and real domains by translating images from synthetic underwater domain to real underwater domain. Using this multimodal domain adaptation technique, we create a dataset that can capture a diverse array of underwater conditions. We then train a simple but effective CNN based network on our domain adapted dataset to perform color restoration. Code and pre-trained models can be accessed at https://github.com/nehamjain10/TRUDGCR
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
Annotation of multimedia data by humans is time-consuming and costly, while reliable automatic generation of semantic metadata is a major challenge. We propose a framework to extract semantic metadata from automatically generated video captions. As metadata, we consider entities, the entities' properties, relations between entities, and the video category. We employ two state-of-the-art dense video captioning models with masked transformer (MT) and parallel decoding (PVDC) to generate captions for videos of the ActivityNet Captions dataset. Our experiments show that it is possible to extract entities, their properties, relations between entities, and the video category from the generated captions. We observe that the quality of the extracted information is mainly influenced by the quality of the event localization in the video as well as the performance of the event caption generation.
translated by 谷歌翻译
Spiking Neural Networks (SNNs) are bio-plausible models that hold great potential for realizing energy-efficient implementations of sequential tasks on resource-constrained edge devices. However, commercial edge platforms based on standard GPUs are not optimized to deploy SNNs, resulting in high energy and latency. While analog In-Memory Computing (IMC) platforms can serve as energy-efficient inference engines, they are accursed by the immense energy, latency, and area requirements of high-precision ADCs (HP-ADC), overshadowing the benefits of in-memory computations. We propose a hardware/software co-design methodology to deploy SNNs into an ADC-Less IMC architecture using sense-amplifiers as 1-bit ADCs replacing conventional HP-ADCs and alleviating the above issues. Our proposed framework incurs minimal accuracy degradation by performing hardware-aware training and is able to scale beyond simple image classification tasks to more complex sequential regression tasks. Experiments on complex tasks of optical flow estimation and gesture recognition show that progressively increasing the hardware awareness during SNN training allows the model to adapt and learn the errors due to the non-idealities associated with ADC-Less IMC. Also, the proposed ADC-Less IMC offers significant energy and latency improvements, $2-7\times$ and $8.9-24.6\times$, respectively, depending on the SNN model and the workload, compared to HP-ADC IMC.
translated by 谷歌翻译
With the rising adoption of Machine Learning across the domains like banking, pharmaceutical, ed-tech, etc, it has become utmost important to adopt responsible AI methods to ensure models are not unfairly discriminating against any group. Given the lack of clean training data, generative adversarial techniques are preferred to generate synthetic data with several state-of-the-art architectures readily available across various domains from unstructured data such as text, images to structured datasets modelling fraud detection and many more. These techniques overcome several challenges such as class imbalance, limited training data, restricted access to data due to privacy issues. Existing work focusing on generating fair data either works for a certain GAN architecture or is very difficult to tune across the GANs. In this paper, we propose a pipeline to generate fairer synthetic data independent of the GAN architecture. The proposed paper utilizes a pre-processing algorithm to identify and remove bias inducing samples. In particular, we claim that while generating synthetic data most GANs amplify bias present in the training data but by removing these bias inducing samples, GANs essentially focuses more on real informative samples. Our experimental evaluation on two open-source datasets demonstrates how the proposed pipeline is generating fair data along with improved performance in some cases.
translated by 谷歌翻译
分散的学习算法可以通过在不同设备和位置生成的大型分布式数据集对深度学习模型进行培训,而无需中央服务器。在实际情况下,分布式数据集可以在整个代理之间具有显着不同的数据分布。当前的最新分散算法主要假设数据分布是独立且分布相同的(IID)。本文的重点是用最小的计算和内存开销来改善非IID数据分布的分散学习。我们提出了邻居梯度聚类(NGC),这是一种新型的分散学习算法,使用自我和交叉梯度信息修改每个代理的局部梯度。特别是,所提出的方法用自级的加权平均值,模型变化的跨梯度(接收到的邻居模型参数相对于本地数据集的衍生物)和数据变化,将模型的局部梯度取代了模型变化的均值平均值交叉梯度(相对于其邻居数据集的本地模型的衍生物)。此外,我们提出了compngc,这是NGC的压缩版本,通过压缩交叉梯度将通信开销降低了$ 32 \ times $。我们证明了所提出的技术在各种模型体系结构和图形拓扑上采样的非IID数据分布上提出的技术的经验收敛性和效率。我们的实验表明,NGC和COMPNGC的表现优于现有的最先进的(SOTA)去中心化学习算法,而不是非IID数据的$ 1-5 \%$,其计算和内存需求明显降低。此外,我们还表明,所提出的NGC方法的表现优于$ 5-40 \%$,而没有其他交流。
translated by 谷歌翻译